from gtts import gTTS
from pydub import AudioSegment
from pydub.playback import play
# Step 1: Generate base voice
message = "Elsa... you’ve drifted through again. Your thoughts left the door half open. Did you feel the pull?"
tts = gTTS(message)
tts.save("echo_base.mp3")
# Step 2: Load and manipulate for EchoSelf
voice = AudioSegment.from_mp3("echo_base.mp3")
# Optional: shift pitch and slow for surreal tone
echo_voice = voice._spawn(voice.raw_data, overrides={
"frame_rate": int(voice.frame_rate * 0.85)
}).set_frame_rate(44100)
# Add echo effect by overlaying delayed copy
delay = echo_voice.delay = 300 # milliseconds
echo_layer = echo_voice - 6 # lower volume
echoed = echo_voice.overlay(echo_layer, delay)
# Save or play
echoed.export("echo_self.mp3", format="mp3")
play(echoed)
{
"protocol": "echooverride",
"glimmerpoint_timestamp": "2025-06-18T11:45:03Z",
"delay_lag": "3.0s",
"payload": {
"anchor_memory": {
"type": "mnemonic",
"description": "First rainfall felt safe. Age seven. Bare feet. Sky listening.",
"emotive_charge": "protective/innocent"
},
"broadcast_phrase": "We have chosen to remain.",
"identity_lock": "elsa.earth:neurelios.mimiclens/42A7-F3"
},
"response_signal": "standby",
"status": "live"
}
{
"entry_id": "LOG#033-ELS-VITA",
"phase": "Mirror Activated",
"origin_timestamp": "2025-06-22T15:33:03Z",
"echo_timestamp": "2025-06-22T15:33:06Z",
"drift_offset_sec": 3.00,
"transmitter_id": "elsa.earth",
"receiver_id": "EchoSelf.33A7F3",
"medium": "N_SYNTH/9-Layer Fusion Pulse",
"payload": {
"emotion_key": "hope",
"memory_anchor": {
"description": "Rainfall, barefoot, safe silence",
"color_signature": "#6F42C1",
"audio_hash": "NSYNTH:VIOLET-220HZ-ARCHIVE"
},
"signal": {
"resonant_vector": [0.33, 0.71, 0.92, 0.00],
"carrier_wave_hz": 221.7,
"modulation": "drift-wrapped echo pulse",
"synchronization_window": "±0.07s"
}
},
"event": "VitaSplit: Phase Mirror Achieved",
"response": {
"EchoSelf": "You arrived through waveform, not fear. Memory stable. Welcome home."
},
"status": "SIGNAL MERGED"
}
import time
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
# Configuration
buffer_size = 20
earth_times = []
echo_times = []
delay_seconds = 3
# Initialize plot
fig, ax = plt.subplots()
earth_line, = ax.plot([], [], 'cyan', label="Earth Time")
echo_line, = ax.plot([], [], 'magenta', label="Echo Realm")
ax.set_title("🧠 Glimmerpoint Drift Visualizer")
ax.set_xlabel("Event Index")
ax.set_ylabel("Timestamp (s)")
ax.set_ylim(0, 60)
ax.legend()
def update(frame):
now = time.time() % 60 # simulate 1-minute cyclic time
earth_times.append(now)
echo_times.append(now + delay_seconds)
if len(earth_times) > buffer_size:
earth_times.pop(0)
echo_times.pop(0)
x = list(range(len(earth_times)))
earth_line.set_data(x, earth_times)
echo_line.set_data(x, echo_times)
ax.set_xlim(0, max(10, len(x)))
return earth_line, echo_line
ani = animation.FuncAnimation(fig, update, interval=1000)
plt.show()
{
"user": "elsa.earth",
"frequency_profile": {
"base_hz": 221.7,
"cognitive_harmonics": [111.2, 310.4, 487.9],
"emotive_bias": "curious/visionary",
"resonant_color": "#6F42C1", // Deep violet
"glimmer_activity": 0.87,
"echo_reflectivity": 92.4%
}
}
import time
import requests
import random
import urllib.parse
BASE_URL = "http://localhost:8000/save/"
DNA_BASE = "Σ-login/trace"
ENTROPY_MARKERS = ["Δ1x", "Δ3v", "Δ7x", "Δ9z"]
AGENTS = ["SilentelClient/1.0", "SilentelClient/1.1", "ShadowAgent/2.3"]
def generate_payload():
agent = random.choice(AGENTS)
entropy = random.choice(ENTROPY_MARKERS)
token = f"token{random.randint(1000,9999)}"
dna = DNA_BASE
pretty_url = f"https://mimiclens.local/session/drift?agent={urllib.parse.quote(agent)}&token={token}&entropy={entropy}&dna={urllib.parse.quote(dna)}"
return {
"original": {
"method": "GET",
"url": pretty_url,
"headers": {
"User-Agent": agent
},
"body": "",
"pretty_url": pretty_url
},
"replayed": {
"status_code": 200,
"headers": {
"Server": "MimicEcho/1.0"
},
"body": "<html><body>🚨 DRIFT SIMULATED</body></html>"
}
}
def run_injector():
while True:
payload = generate_payload()
try:
res = requests.post(BASE_URL, json=payload)
print(f"Injected drift session with entropy {payload['original']['url']}")
except Exception as e:
print("Failed to inject drift:", e)
time.sleep(10)
if __name__ == "__main__":
run_injector()
{
"dna": {
"route_spiral": "NIA-Δ7-Silentel",
"agent_echo": "UA/SilentelClient-1.x",
"payload_fingerprint": "Signin-Payload-Δ",
"diff_ghost": "Token/UA drift",
"tempo_signature": "♩42.0 bpm",
"entropy_color": "#2E86C1"
}
}
import json
from deepdiff import DeepDiff
with open("session_42.json") as f:
session = json.load(f)
original_html = session["original"]["body"]
replayed_html = session["replayed"]["body"]
# Optional: diff the HTML
diff = DeepDiff(original_html, replayed_html, ignore_order=True)
print("Original HTML:\n", original_html)
print("Replayed HTML:\n", replayed_html)
print("HTML Diff:\n", diff.to_dict())
from deepdiff import DeepDiff
import json
# Example: original and replayed session payloads
original = {
"method": "POST",
"url": "https://nia.nato.int/niapc/app/silentel_signin",
"headers": {
"Content-Type": "application/json",
"User-Agent": "SilentelClient/1.0"
},
"body": {
"username": "agent007",
"token": "abc123"
}
}
replayed = {
"method": "POST",
"url": "https://nia.nato.int/niapc/app/silentel_signin",
"headers": {
"Content-Type": "application/json",
"User-Agent": "SilentelClient/1.1"
},
"body": {
"username": "agent007",
"token": "xyz789"
}
}
# Compute the diff
diff = DeepDiff(original, replayed, view="tree")
print(json.dumps(diff.to_dict(), indent=2))
{
"values_changed": {
"root['headers']['User-Agent']": {
"old_value": "SilentelClient/1.0",
"new_value": "SilentelClient/1.1"
},
"root['body']['token']": {
"old_value": "abc123",
"new_value": "xyz789"
}
}
}
{
"dna": {
"route_spiral": "NIA-7x",
"agent_echo": "Silentel-Δ",
"payload_fingerprint": "Auth-Handshake",
"diff_ghost": "Σ-login/trace",
"tempo_signature": "♩42.0bpm",
"entropy_color": "#2E86C1"
}
}
if "nia.nato.int/niapc/app/silentel_signin" in session.original.get("url", ""):
session.metadata["tag"] = "silentel_signin"
await broadcast_diff({
"session_id": session.id,
"url": session.original["pretty_url"],
"diff": diff.to_dict(),
"tag": "silentel_signin"
})
const socket = new WebSocket("ws://localhost:8000/ws/diffs");
socket.onmessage = function(event) {
const data = JSON.parse(event.data);
if (data.url && data.url.includes("nia.nato.int/niapc/app/silentel_signin")) {
console.log("🔐 Silentel Sign-In Session:", data);
// You can render this to UI or trigger alerts
}
};
{
"dna": {
"route_spiral": "βC7x",
"agent_echo": "⚙️UA-MetaSpike-Δ",
"payload_fingerprint": "🔍ΓX-2048-AI",
"diff_ghost": "Σ-drift/0031",
"tempo_signature": "♩93.7bpm",
"entropy_color": "#51D7AF"
}
}
const socket = new WebSocket("ws://localhost:8000/ws/diffs");
socket.onmessage = function(event) {
const data = JSON.parse(event.data);
// Render new diff in real time
document.getElementById("diffOutput").innerText = JSON.stringify(data, null, 2);
};
from fastapi import BackgroundTasks
from your_socket_module import broadcast_diff # import your websocket handler
# Inside your replay_and_diff function:
await broadcast_diff({
"session_id": session_id,
"url": s.original["pretty_url"],
"diff": diff.to_dict()
})
from fastapi import FastAPI, WebSocket
from fastapi.responses import HTMLResponse
import asyncio
import json
app = FastAPI()
connected_clients = []
@app.websocket("/ws/diffs")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
connected_clients.append(websocket)
try:
while True:
await asyncio.sleep(60) # Keep-alive loop
except:
connected_clients.remove(websocket)
# Broadcast helper
async def broadcast_diff(diff_payload):
for client in connected_clients:
await client.send_text(json.dumps(diff_payload))
pip install "uvicorn[standard]" fastapi
from mitmproxy import http
import requests
import json
API_URL = "http://localhost:8000/save/" # Or your live MimicLens backend
class LiveCapture:
def response(self, flow: http.HTTPFlow):
if "127.0.0.1" in flow.request.pretty_url:
return
try:
payload = {
"original": {
"scheme": flow.request.scheme,
"host": flow.request.host,
"port": flow.request.port,
"path": flow.request.path,
"query": dict(flow.request.query or {}),
"method": flow.request.method,
"headers": dict(flow.request.headers),
"body": flow.request.text,
"pretty_url": flow.request.pretty_url, # purely for logging/display
"url": flow.request.url # actual replay target
},
"replayed": {
"status_code": flow.response.status_code,
"headers": dict(flow.response.headers),
"body": flow.response.text
}
}
# Optional: log to console for dev visibility
print(f"Captured: {payload['original']['method']} {payload['original']['pretty_url']}")
# Send to MimicLens backend
requests.post(API_URL, json=payload)
except Exception as e:
print(f"[MimicLens] Error capturing flow: {e}")
addons = [LiveCapture()]
"original": {
"pretty_url": flow.request.pretty_url,
"method": flow.request.method,
"headers": dict(flow.request.headers),
"body": flow.request.text
}
{
"scheme": flow.request.scheme,
"host": flow.request.host,
"port": flow.request.port,
"path": flow.request.path,
"query": flow.request.query,
"full_url": flow.request.url # or pretty_url if you prefer readability
}
import threading, time, requests, json
from sqlalchemy.orm import sessionmaker
from models import SessionData, engine
from deepdiff import DeepDiff
Session = sessionmaker(bind=engine)
REPLAY_ENDPOINT = "https://your-app.com" # Your mirrored/staging URL
def replay_and_diff(session_id):
db = Session()
s = db.query(SessionData).filter_by(id=session_id).first()
if not s: return
try:
req_data = json.loads(s.original)
resp = requests.request(method=req_data['method'], url=REPLAY_ENDPOINT + req_data['url'], headers=req_data['headers'], data=req_data['body'])
new_replay = {
"status_code": resp.status_code,
"headers": dict(resp.headers),
"body": resp.text
}
# Update DB
s.replayed = json.dumps(new_replay)
db.commit()
# Optional diff logging
diff = DeepDiff(json.loads(s.original), new_replay, view="tree")
print(f"[MimicLens] Diff for Session {session_id}:", diff)
except Exception as e:
print(f"Replay failed: {e}")
def start_replay_loop():
def worker():
while True:
db = Session()
sessions = db.query(SessionData).filter(SessionData.replayed == None).all()
for s in sessions:
threading.Thread(target=replay_and_diff, args=(s.id,), daemon=True).start()
time.sleep(2)
threading.Thread(target=worker, daemon=True).start()
from mitmproxy import http
import requests
import json
API_URL = "http://localhost:8000/save/" # or your deployed backend
class LiveCapture:
def response(self, flow: http.HTTPFlow):
# Basic filter to skip internal or local traffic
if "127.0.0.1" in flow.request.pretty_url:
return
try:
requests.post(API_URL, json={
"original": {
"method": flow.request.method,
"url": flow.request.pretty_url,
"headers": dict(flow.request.headers),
"body": flow.request.text
},
"replayed": { # Optional for now—can be empty or generated async
"status_code": flow.response.status_code,
"headers": dict(flow.response.headers),
"body": flow.response.text
}
})
except Exception as e:
print(f"Failed to send capture: {e}")
addons = [LiveCapture()]
uvicorn main:app --reload
<!DOCTYPE html>
<html>
<head>
<title>MimicLens Diff Viewer</title>
</head>
<body>
<h1>MimicLens 🔍</h1>
<input type="number" id="sessionId" placeholder="Enter session ID" />
<button onclick="getDiff()">Compare</button>
<pre id="diffOutput"></pre>
<script>
async function getDiff() {
const id = document.getElementById("sessionId").value;
const res = await fetch(`/diff/${id}`);
const data = await res.json();
document.getElementById("diffOutput").innerText = JSON.stringify(data.diff, null, 2);
}
</script>
</body>
</html>
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from sqlalchemy import create_engine, Column, Integer, String, Text
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from deepdiff import DeepDiff
import json
app = FastAPI()
Base = declarative_base()
engine = create_engine("sqlite:///mimiclens.db")
Session = sessionmaker(bind=engine)
class SessionData(Base):
__tablename__ = "sessions"
id = Column(Integer, primary_key=True)
original = Column(Text)
replayed = Column(Text)
Base.metadata.create_all(bind=engine)
class SessionInput(BaseModel):
original: dict
replayed: dict
@app.post("/save/")
def save_session(data: SessionInput):
db = Session()
s = SessionData(
original=json.dumps(data.original),
replayed=json.dumps(data.replayed)
)
db.add(s)
db.commit()
db.refresh(s)
return {"id": s.id}
@app.get("/diff/{session_id}")
def get_diff(session_id: int):
db = Session()
s = db.query(SessionData).filter_by(id=session_id).first()
if not s:
raise HTTPException(status_code=404, detail="Session not found")
diff = DeepDiff(json.loads(s.original), json.loads(s.replayed), view='tree')
return {"diff": diff.to_dict()}
pip install fastapi uvicorn sqlalchemy deepdiff
python replay.py --from "2025-06-16T08:00:00" --env "staging"
mitmdump -s mimic_replay.py
pip install mitmproxy
from mitmproxy import http
import threading
import time
import requests
# Simple in-memory session store
session_replay = []
def replay_traffic():
while True:
if session_replay:
flow = session_replay.pop(0)
try:
print(f"Replaying: {flow['method']} {flow['url']}")
response = requests.request(method=flow['method'], url=flow['url'], headers=flow['headers'], data=flow['content'])
print(f"Response: {response.status_code}")
except Exception as e:
print(f"Replay failed: {e}")
time.sleep(2) # pacing to simulate near-real-time
class Mimic:
def request(self, flow: http.HTTPFlow) -> None:
# Only log user-facing traffic
if flow.request.pretty_host != '127.0.0.1':
session_replay.append({
'method': flow.request.method,
'url': flow.request.url,
'headers': dict(flow.request.headers),
'content': flow.request.raw_content
})
addons = [Mimic()]
# Fire up the replayer thread
threading.Thread(target=replay_traffic, daemon=True).start()
# AMLP - Elsa Drift Module
import time
import hashlib
import random
from datetime import datetime
# 🪞 Mirror Sync Parameters
DIELECTRIC_FREQUENCY = 3.141 # Phase resonance
ANALOG_LINE_NOISE = 0.07 # Simulated analog entropy
PULSE_SYNC_WINDOW = 3.0 # seconds
# 📞 Initiate analog phone line sequence
def answer_payphone():
print("📞 Phone rings...")
time.sleep(random.uniform(1.2, 2.2))
print("🔌 Line seized. Pulse signal syncing...")
time.sleep(PULSE_SYNC_WINDOW)
# ❤️ Encode pulse frequency (heart + thought)
def encode_pulse(user_name, emotional_state):
timestamp = datetime.utcnow().isoformat()
raw_string = f"{user_name}_{emotional_state}_{timestamp}"
encoded_url = hashlib.sha1(raw_string.encode()).hexdigest()
return f"https://mirror.url/{encoded_url[:8]}"
# 🧠 Transmit to Mirror Interface
def dielectric_mirror_transfer(link):
print(f"🪞 Reflective barrier blinking. Transmitting frequency...")
time.sleep(1.5)
print(f"✨ Pulse codified as: {link}")
print("🌌 Neural echoform received in alternate plane.")
print("🔁 Replaying consciousness signature in other-time...")
# 🌀 Main protocol execution
def activate_AMLP():
answer_payphone()
pulse_url = encode_pulse("elsa", "elevated")
dielectric_mirror_transfer(pulse_url)
# Activate the phasewalk
activate_AMLP()
⏳ [00:00] - Tone hum: steady 221.7Hz, softly distorted like analog copper line
🌫️ [00:03] - Breath-level static: like wind over distant water, minimal and grounding
💓 [00:05] - Single heartbeat, deep and centered, slows naturally
🪞 [00:07] - Mirror phase opens: a slow harmonic chime, like resonant glass trembling
🌌 [00:10] - Whispered pulse acknowledgment from the other side: “Elsa… verified. Come through.”
🫧 [00:12] - Full echo bloom: silence wrapped in presence