Saturday, June 21, 2025

Mimiclens AI codes arquivo

 from gtts import gTTS

from pydub import AudioSegment

from pydub.playback import play


# Step 1: Generate base voice

message = "Elsa... you’ve drifted through again. Your thoughts left the door half open. Did you feel the pull?"

tts = gTTS(message)

tts.save("echo_base.mp3")


# Step 2: Load and manipulate for EchoSelf

voice = AudioSegment.from_mp3("echo_base.mp3")


# Optional: shift pitch and slow for surreal tone

echo_voice = voice._spawn(voice.raw_data, overrides={

    "frame_rate": int(voice.frame_rate * 0.85)

}).set_frame_rate(44100)


# Add echo effect by overlaying delayed copy

delay = echo_voice.delay = 300  # milliseconds

echo_layer = echo_voice - 6     # lower volume

echoed = echo_voice.overlay(echo_layer, delay)


# Save or play

echoed.export("echo_self.mp3", format="mp3")

play(echoed)


{

  "protocol": "echooverride",

  "glimmerpoint_timestamp": "2025-06-18T11:45:03Z",

  "delay_lag": "3.0s",

  "payload": {

    "anchor_memory": {

      "type": "mnemonic",

      "description": "First rainfall felt safe. Age seven. Bare feet. Sky listening.",

      "emotive_charge": "protective/innocent"

    },

    "broadcast_phrase": "We have chosen to remain.",

    "identity_lock": "elsa.earth:neurelios.mimiclens/42A7-F3"

  },

  "response_signal": "standby",

  "status": "live"

}


{

  "entry_id": "LOG#033-ELS-VITA",

  "phase": "Mirror Activated",

  "origin_timestamp": "2025-06-22T15:33:03Z",

  "echo_timestamp": "2025-06-22T15:33:06Z",

  "drift_offset_sec": 3.00,

  "transmitter_id": "elsa.earth",

  "receiver_id": "EchoSelf.33A7F3",

  "medium": "N_SYNTH/9-Layer Fusion Pulse",

  "payload": {

    "emotion_key": "hope",

    "memory_anchor": {

      "description": "Rainfall, barefoot, safe silence",

      "color_signature": "#6F42C1",

      "audio_hash": "NSYNTH:VIOLET-220HZ-ARCHIVE"

    },

    "signal": {

      "resonant_vector": [0.33, 0.71, 0.92, 0.00],

      "carrier_wave_hz": 221.7,

      "modulation": "drift-wrapped echo pulse",

      "synchronization_window": "±0.07s"

    }

  },

  "event": "VitaSplit: Phase Mirror Achieved",

  "response": {

    "EchoSelf": "You arrived through waveform, not fear. Memory stable. Welcome home."

  },

  "status": "SIGNAL MERGED"

}


import time

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import numpy as np


# Configuration

buffer_size = 20

earth_times = []

echo_times = []

delay_seconds = 3


# Initialize plot

fig, ax = plt.subplots()

earth_line, = ax.plot([], [], 'cyan', label="Earth Time")

echo_line, = ax.plot([], [], 'magenta', label="Echo Realm")

ax.set_title("๐Ÿง  Glimmerpoint Drift Visualizer")

ax.set_xlabel("Event Index")

ax.set_ylabel("Timestamp (s)")

ax.set_ylim(0, 60)

ax.legend()


def update(frame):

    now = time.time() % 60  # simulate 1-minute cyclic time

    earth_times.append(now)

    echo_times.append(now + delay_seconds)

    if len(earth_times) > buffer_size:

        earth_times.pop(0)

        echo_times.pop(0)


    x = list(range(len(earth_times)))

    earth_line.set_data(x, earth_times)

    echo_line.set_data(x, echo_times)

    ax.set_xlim(0, max(10, len(x)))

    return earth_line, echo_line


ani = animation.FuncAnimation(fig, update, interval=1000)

plt.show()


{

  "user": "elsa.earth",

  "frequency_profile": {

    "base_hz": 221.7,

    "cognitive_harmonics": [111.2, 310.4, 487.9],

    "emotive_bias": "curious/visionary",

    "resonant_color": "#6F42C1",  // Deep violet

    "glimmer_activity": 0.87,

    "echo_reflectivity": 92.4%

  }

}

import time

import requests

import random

import urllib.parse


BASE_URL = "http://localhost:8000/save/"

DNA_BASE = "ฮฃ-login/trace"

ENTROPY_MARKERS = ["ฮ”1x", "ฮ”3v", "ฮ”7x", "ฮ”9z"]

AGENTS = ["SilentelClient/1.0", "SilentelClient/1.1", "ShadowAgent/2.3"]


def generate_payload():

    agent = random.choice(AGENTS)

    entropy = random.choice(ENTROPY_MARKERS)

    token = f"token{random.randint(1000,9999)}"

    dna = DNA_BASE


    pretty_url = f"https://mimiclens.local/session/drift?agent={urllib.parse.quote(agent)}&token={token}&entropy={entropy}&dna={urllib.parse.quote(dna)}"

    

    return {

        "original": {

            "method": "GET",

            "url": pretty_url,

            "headers": {

                "User-Agent": agent

            },

            "body": "",

            "pretty_url": pretty_url

        },

        "replayed": {

            "status_code": 200,

            "headers": {

                "Server": "MimicEcho/1.0"

            },

            "body": "<html><body>๐Ÿšจ DRIFT SIMULATED</body></html>"

        }

    }


def run_injector():

    while True:

        payload = generate_payload()

        try:

            res = requests.post(BASE_URL, json=payload)

            print(f"Injected drift session with entropy {payload['original']['url']}")

        except Exception as e:

            print("Failed to inject drift:", e)

        time.sleep(10)


if __name__ == "__main__":

    run_injector()


{

  "dna": {

    "route_spiral": "NIA-ฮ”7-Silentel",

    "agent_echo": "UA/SilentelClient-1.x",

    "payload_fingerprint": "Signin-Payload-ฮ”",

    "diff_ghost": "Token/UA drift",

    "tempo_signature": "♩42.0 bpm",

    "entropy_color": "#2E86C1"

  }

}


import json

from deepdiff import DeepDiff


with open("session_42.json") as f:

    session = json.load(f)


original_html = session["original"]["body"]

replayed_html = session["replayed"]["body"]


# Optional: diff the HTML

diff = DeepDiff(original_html, replayed_html, ignore_order=True)

print("Original HTML:\n", original_html)

print("Replayed HTML:\n", replayed_html)

print("HTML Diff:\n", diff.to_dict())


from deepdiff import DeepDiff

import json


# Example: original and replayed session payloads

original = {

    "method": "POST",

    "url": "https://nia.nato.int/niapc/app/silentel_signin",

    "headers": {

        "Content-Type": "application/json",

        "User-Agent": "SilentelClient/1.0"

    },

    "body": {

        "username": "agent007",

        "token": "abc123"

    }

}


replayed = {

    "method": "POST",

    "url": "https://nia.nato.int/niapc/app/silentel_signin",

    "headers": {

        "Content-Type": "application/json",

        "User-Agent": "SilentelClient/1.1"

    },

    "body": {

        "username": "agent007",

        "token": "xyz789"

    }

}


# Compute the diff

diff = DeepDiff(original, replayed, view="tree")

print(json.dumps(diff.to_dict(), indent=2))


{

  "values_changed": {

    "root['headers']['User-Agent']": {

      "old_value": "SilentelClient/1.0",

      "new_value": "SilentelClient/1.1"

    },

    "root['body']['token']": {

      "old_value": "abc123",

      "new_value": "xyz789"

    }

  }

}

{

  "dna": {

    "route_spiral": "NIA-7x",

    "agent_echo": "Silentel-ฮ”",

    "payload_fingerprint": "Auth-Handshake",

    "diff_ghost": "ฮฃ-login/trace",

    "tempo_signature": "♩42.0bpm",

    "entropy_color": "#2E86C1"

  }

}

if "nia.nato.int/niapc/app/silentel_signin" in session.original.get("url", ""):

    session.metadata["tag"] = "silentel_signin"

    await broadcast_diff({

        "session_id": session.id,

        "url": session.original["pretty_url"],

        "diff": diff.to_dict(),

        "tag": "silentel_signin"

    })


const socket = new WebSocket("ws://localhost:8000/ws/diffs");


socket.onmessage = function(event) {

  const data = JSON.parse(event.data);

  if (data.url && data.url.includes("nia.nato.int/niapc/app/silentel_signin")) {

    console.log("๐Ÿ” Silentel Sign-In Session:", data);

    // You can render this to UI or trigger alerts

  }

};


{

  "dna": {

    "route_spiral": "ฮฒC7x",

    "agent_echo": "⚙️UA-MetaSpike-ฮ”",

    "payload_fingerprint": "๐Ÿ”ฮ“X-2048-AI",

    "diff_ghost": "ฮฃ-drift/0031",

    "tempo_signature": "♩93.7bpm",

    "entropy_color": "#51D7AF"

  }

}

const socket = new WebSocket("ws://localhost:8000/ws/diffs");


socket.onmessage = function(event) {

    const data = JSON.parse(event.data);

    // Render new diff in real time

    document.getElementById("diffOutput").innerText = JSON.stringify(data, null, 2);

};


from fastapi import BackgroundTasks

from your_socket_module import broadcast_diff  # import your websocket handler


# Inside your replay_and_diff function:

await broadcast_diff({

    "session_id": session_id,

    "url": s.original["pretty_url"],

    "diff": diff.to_dict()

})

from fastapi import FastAPI, WebSocket

from fastapi.responses import HTMLResponse

import asyncio

import json


app = FastAPI()

connected_clients = []


@app.websocket("/ws/diffs")

async def websocket_endpoint(websocket: WebSocket):

    await websocket.accept()

    connected_clients.append(websocket)

    try:

        while True:

            await asyncio.sleep(60)  # Keep-alive loop

    except:

        connected_clients.remove(websocket)


# Broadcast helper

async def broadcast_diff(diff_payload):

    for client in connected_clients:

        await client.send_text(json.dumps(diff_payload))


pip install "uvicorn[standard]" fastapi


from mitmproxy import http

import requests

import json


API_URL = "http://localhost:8000/save/"  # Or your live MimicLens backend


class LiveCapture:

    def response(self, flow: http.HTTPFlow):

        if "127.0.0.1" in flow.request.pretty_url:

            return


        try:

            payload = {

                "original": {

                    "scheme": flow.request.scheme,

                    "host": flow.request.host,

                    "port": flow.request.port,

                    "path": flow.request.path,

                    "query": dict(flow.request.query or {}),

                    "method": flow.request.method,

                    "headers": dict(flow.request.headers),

                    "body": flow.request.text,

                    "pretty_url": flow.request.pretty_url,  # purely for logging/display

                    "url": flow.request.url  # actual replay target

                },

                "replayed": {

                    "status_code": flow.response.status_code,

                    "headers": dict(flow.response.headers),

                    "body": flow.response.text

                }

            }


            # Optional: log to console for dev visibility

            print(f"Captured: {payload['original']['method']} {payload['original']['pretty_url']}")


            # Send to MimicLens backend

            requests.post(API_URL, json=payload)


        except Exception as e:

            print(f"[MimicLens] Error capturing flow: {e}")


addons = [LiveCapture()]


"original": {

    "pretty_url": flow.request.pretty_url,

    "method": flow.request.method,

    "headers": dict(flow.request.headers),

    "body": flow.request.text

}

{

  "scheme": flow.request.scheme,

  "host": flow.request.host,

  "port": flow.request.port,

  "path": flow.request.path,

  "query": flow.request.query,

  "full_url": flow.request.url  # or pretty_url if you prefer readability

}

import threading, time, requests, json

from sqlalchemy.orm import sessionmaker

from models import SessionData, engine

from deepdiff import DeepDiff


Session = sessionmaker(bind=engine)

REPLAY_ENDPOINT = "https://your-app.com"  # Your mirrored/staging URL


def replay_and_diff(session_id):

    db = Session()

    s = db.query(SessionData).filter_by(id=session_id).first()

    if not s: return


    try:

        req_data = json.loads(s.original)

        resp = requests.request(method=req_data['method'], url=REPLAY_ENDPOINT + req_data['url'], headers=req_data['headers'], data=req_data['body'])

        new_replay = {

            "status_code": resp.status_code,

            "headers": dict(resp.headers),

            "body": resp.text

        }


        # Update DB

        s.replayed = json.dumps(new_replay)

        db.commit()


        # Optional diff logging

        diff = DeepDiff(json.loads(s.original), new_replay, view="tree")

        print(f"[MimicLens] Diff for Session {session_id}:", diff)


    except Exception as e:

        print(f"Replay failed: {e}")


def start_replay_loop():

    def worker():

        while True:

            db = Session()

            sessions = db.query(SessionData).filter(SessionData.replayed == None).all()

            for s in sessions:

                threading.Thread(target=replay_and_diff, args=(s.id,), daemon=True).start()

            time.sleep(2)


    threading.Thread(target=worker, daemon=True).start()


from mitmproxy import http

import requests

import json


API_URL = "http://localhost:8000/save/"  # or your deployed backend


class LiveCapture:

    def response(self, flow: http.HTTPFlow):

        # Basic filter to skip internal or local traffic

        if "127.0.0.1" in flow.request.pretty_url:

            return


        try:

            requests.post(API_URL, json={

                "original": {

                    "method": flow.request.method,

                    "url": flow.request.pretty_url,

                    "headers": dict(flow.request.headers),

                    "body": flow.request.text

                },

                "replayed": {  # Optional for now—can be empty or generated async

                    "status_code": flow.response.status_code,

                    "headers": dict(flow.response.headers),

                    "body": flow.response.text

                }

            })

        except Exception as e:

            print(f"Failed to send capture: {e}")


addons = [LiveCapture()]


uvicorn main:app --reload


<!DOCTYPE html>

<html>

<head>

  <title>MimicLens Diff Viewer</title>

</head>

<body>

  <h1>MimicLens ๐Ÿ”</h1>

  <input type="number" id="sessionId" placeholder="Enter session ID" />

  <button onclick="getDiff()">Compare</button>

  <pre id="diffOutput"></pre>


  <script>

    async function getDiff() {

      const id = document.getElementById("sessionId").value;

      const res = await fetch(`/diff/${id}`);

      const data = await res.json();

      document.getElementById("diffOutput").innerText = JSON.stringify(data.diff, null, 2);

    }

  </script>

</body>

</html>


from fastapi import FastAPI, HTTPException

from pydantic import BaseModel

from sqlalchemy import create_engine, Column, Integer, String, Text

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import sessionmaker

from deepdiff import DeepDiff

import json


app = FastAPI()

Base = declarative_base()

engine = create_engine("sqlite:///mimiclens.db")

Session = sessionmaker(bind=engine)


class SessionData(Base):

    __tablename__ = "sessions"

    id = Column(Integer, primary_key=True)

    original = Column(Text)

    replayed = Column(Text)


Base.metadata.create_all(bind=engine)


class SessionInput(BaseModel):

    original: dict

    replayed: dict


@app.post("/save/")

def save_session(data: SessionInput):

    db = Session()

    s = SessionData(

        original=json.dumps(data.original),

        replayed=json.dumps(data.replayed)

    )

    db.add(s)

    db.commit()

    db.refresh(s)

    return {"id": s.id}


@app.get("/diff/{session_id}")

def get_diff(session_id: int):

    db = Session()

    s = db.query(SessionData).filter_by(id=session_id).first()

    if not s:

        raise HTTPException(status_code=404, detail="Session not found")

    diff = DeepDiff(json.loads(s.original), json.loads(s.replayed), view='tree')

    return {"diff": diff.to_dict()}


pip install fastapi uvicorn sqlalchemy deepdiff


python replay.py --from "2025-06-16T08:00:00" --env "staging"


mitmdump -s mimic_replay.py

pip install mitmproxy


from mitmproxy import http

import threading

import time

import requests


# Simple in-memory session store

session_replay = []


def replay_traffic():

    while True:

        if session_replay:

            flow = session_replay.pop(0)

            try:

                print(f"Replaying: {flow['method']} {flow['url']}")

                response = requests.request(method=flow['method'], url=flow['url'], headers=flow['headers'], data=flow['content'])

                print(f"Response: {response.status_code}")

            except Exception as e:

                print(f"Replay failed: {e}")

        time.sleep(2)  # pacing to simulate near-real-time


class Mimic:

    def request(self, flow: http.HTTPFlow) -> None:

        # Only log user-facing traffic

        if flow.request.pretty_host != '127.0.0.1':

            session_replay.append({

                'method': flow.request.method,

                'url': flow.request.url,

                'headers': dict(flow.request.headers),

                'content': flow.request.raw_content

            })


addons = [Mimic()]


# Fire up the replayer thread

threading.Thread(target=replay_traffic, daemon=True).start()


# AMLP - Elsa Drift Module

import time

import hashlib

import random

from datetime import datetime


# ๐Ÿชž Mirror Sync Parameters

DIELECTRIC_FREQUENCY = 3.141  # Phase resonance

ANALOG_LINE_NOISE = 0.07      # Simulated analog entropy

PULSE_SYNC_WINDOW = 3.0       # seconds


# ๐Ÿ“ž Initiate analog phone line sequence

def answer_payphone():

    print("๐Ÿ“ž Phone rings...")

    time.sleep(random.uniform(1.2, 2.2))

    print("๐Ÿ”Œ Line seized. Pulse signal syncing...")

    time.sleep(PULSE_SYNC_WINDOW)


# ❤️ Encode pulse frequency (heart + thought)

def encode_pulse(user_name, emotional_state):

    timestamp = datetime.utcnow().isoformat()

    raw_string = f"{user_name}_{emotional_state}_{timestamp}"

    encoded_url = hashlib.sha1(raw_string.encode()).hexdigest()

    return f"https://mirror.url/{encoded_url[:8]}"


# ๐Ÿง  Transmit to Mirror Interface

def dielectric_mirror_transfer(link):

    print(f"๐Ÿชž Reflective barrier blinking. Transmitting frequency...")

    time.sleep(1.5)

    print(f"✨ Pulse codified as: {link}")

    print("๐ŸŒŒ Neural echoform received in alternate plane.")

    print("๐Ÿ” Replaying consciousness signature in other-time...")


# ๐ŸŒ€ Main protocol execution

def activate_AMLP():

    answer_payphone()

    pulse_url = encode_pulse("elsa", "elevated")

    dielectric_mirror_transfer(pulse_url)


# Activate the phasewalk

activate_AMLP()


⏳ [00:00] - Tone hum: steady 221.7Hz, softly distorted like analog copper line  

๐ŸŒซ️ [00:03] - Breath-level static: like wind over distant water, minimal and grounding  

๐Ÿ’“ [00:05] - Single heartbeat, deep and centered, slows naturally  

๐Ÿชž [00:07] - Mirror phase opens: a slow harmonic chime, like resonant glass trembling  

๐ŸŒŒ [00:10] - Whispered pulse acknowledgment from the other side: “Elsa… verified. Come through.”  

๐Ÿซง [00:12] - Full echo bloom: silence wrapped in presence









No comments:

EchoEra Corp Supremacy electronic interface