Saturday, May 27, 2017

Subnetting: The ANDing Process

Introduction


As you would learn in basic TCP/IP, when a host connects to another 
host, it has to determine whether or the connection is local or remote 
(on the same subnet or on a different subnet). When connections are 
local, the two hosts usually directly connect to one another to 
communicate. When they are not, however, they have to connect to a 
router, which forwards the packets along a path that eventually reaches 
the packets' final destination: the remote host.

Well, in order to do this (that is, determining whether or not the 
connection is local or remote), the host will execute a simple 
mathematical function called an AND function. Even though this all 
takes place automatically, it's important to understand it to in turn 
understand how IP-based systems know whether to send packets to a host 
or a router.

The Operation Itself


The AND function (or operation) is pretty simple...two binary digits are 
compared, and based on their combination, a result is produced. It's 
not addition, multiplication, subtraction, division, etc... I mean, 
there are only 3 outcomes possible when ANDing two binary digits.

CODE : 
0 AND 0 = 0
0 AND 1 = 0
1 AND 1 = 1


Basically unless the two digits are both 1, the result is 0.

But...how is this used in determining whether or not a host is local or 
remote, you ask? I'm getting to that.

Using the ANDing Process to Determine the Location of a Host


It's really not too complicated. Basically, the host takes its own IP 
address and ANDs it with its own subnet mask. Next, it takes the 
destination IP and ANDs it with its own subnet mask. Then, it compares 
these two numbers. If both results of the ANDing are identical, then 
the hosts reside on the same subnet, and it is a local connection. If 
they aren't, the destination host is remote, and they don't reside on 
the same subnet.

Pretty simple, huh? Well, just to be sure you got the hang of it, let's 
go over an example.

Host 1's IP is 192.168.1.3 (a class C IP address, if you remember my 
previous articles) , with a subnet mask of 255.255.255.0
Host 2's IP is 192.168.1.7, which is also class C, and has a subnet mask 
of 255.255.255.0.

Well, to find out if the connection is local or remote, Host 1 starts 
the ANDing process.

CODE : 
Host 1's IP in binary (you should remember how to do this from my
previous
article):
11000000 10101000 00000001 00000011

Host 2's IP in binary:
11000000 10101000 00000001 00000111

Subnet mask in binary:
11111111 11111111 11111111 00000000

ANDing process for Host 1:
11000000 10101000 00000001 00000011 AND
11111111 11111111 11111111 00000000 =
11000000 10101000 00000001 00000000 (result)

ANDing process for Host 2:
11000000 10101000 00000001 00000111 AND
11111111 11111111 11111111 00000000 =
11000000 10101000 00000001 00000000 (result)

Comparing the results against one another:
Host 1: 11000000 10101000 00000001 00000000
Host 2: 11000000 10101000 00000001 00000000


As you can see, they're the same, meaning they're on the same subnet, and are 
locally connected to one another.

Now, there are two different ways to write an IP address using subnet masks. 
For one, you have a host's class A/B IP and subnet mask; for two, you have its 
class C IP and subnet mask (but shown in bits). For example, 49.22.2.3 
255.0.0.0 (class A IP and subnet mask), or 192.168.1.3/24 (class C IP and 
subnet mask shown in bits (255 in binary is 11111111 or 8 bits...1111111*3=24 
in base 10)).

More on Subnets


Often times it is fairly useful to divide a network into smaller networks. 
Reasons for this are outlined in my previous article, but to recap: to prevent 
the wasting of IPs, to make it difficult to map the internal structure of a 
network, etc. Well, here's how it's done.

Let's say we want to divide a class B IP into 8 subnets. As you should know at 
this point, the class B subnet mask is 255.255.0.0. Well, to do this, we need 
to use something called the borrowing process (maybe covered in a later 
article) to create the 8 subnets. Since we need 8, we need 8 different 
combinations + 1 more (the broadcast (also maybe covered later)), so 9 in 
total.

The binary equivalent of 9 is 1001, which is 4 bits long.

CODE : 
Subnet mask:
11111111 11111111 00000000 00000000
Putting 4 bits into the third group (or the first octet of the host part of the
IP (read earlier articles!!!)):
11111111 11111111 11110000 00000000 (240 in base 10)


So our new subnet mask would be...? You might have guessed it, 255.255.240.0.

A simple calculation to determine the number of subnets is 2^x-2 (as stated in 
a previous article, once again! :P), where x is the bits number for the subnet 
mask (or 4 in the above example).

The calculation for subnets addresses (finally, something new, eh?) is 256-s, 
where s is the value of the subnet mask; above, this value was 240.

The calculation for the hosts number is 2^y-2, where y is the number of 
remaining bits. In our example, this was 12, because:

CODE : 
----------------------bits left (12)
11111111 11111111 11110000 00000000
----------------- bits
----------------inserted
------------------(4)


The IP address numbers are between the IP of the first subnet and the IP of the 
last subnet witht he exclusion of the broadcast and network IPs. Broadcast IPs 
have all the bits of the host portion set to one (255s), and network IPs have 
all the bits of the host portion set to 0 (0s).

Let's sum this up with one last example.

Let's divide a class C IP address into two subnets. We'll use 192.168.1.3 
again. As you already know, you need 2 subnets +1 for broadcasting, so 3 
total. In binary, 3 is 11, or two bits. The class C subnet mask (as you 
should know by now) is 255.255.255.0. After the borrowing process, its last 
group becomes 11000000, or 192 in base 10. So the new subnet mask is 
255.255.255.192.

Number of hosts: 2^6-2=62 (y is 6 in this case)
Subnet addresses: 256-192=64 (s is 192)...so it starts with 192.168.1.67 then 
goes to 192.168.1.131...it starts with 64 and keeps adding 64.

That's about all I can cover in the scope of this particular article. As 
always, look out for articles from me in the future.

https://www.hackthissite.org/articles/read/902

No comments:

Portugal Intel ( p ex o Sócrates foi dentro pela mão da PJM o fdp n teve mt medo do bunker a @PJudiciaria usa virus para obter provas no se pasa nada compadres VAI TER 1PREÇO)

  https://www.wook.pt/livro/o-malware-como-meio-de-obtencao-de-prova-em-processo-penal-juliana-filipa-sousa-campos/24584060 https://pt.scrib...