Friday, November 3, 2017

Ok, I'll try to resume the tools fro breaking chaos modulation, starting with spicy

# Author: Travis Oliphant
# 1999 -- 2002
from __future__ import division, print_function, absolute_import
import operator
import threading
import sys
import timeit
from . import sigtools, dlti
from ._upfirdn import upfirdn, _output_len
from scipy._lib.six import callable
from scipy._lib._version import NumpyVersion
from scipy import fftpack, linalg
from numpy import (allclose, angle, arange, argsort, array, asarray,
atleast_1d, atleast_2d, cast, dot, exp, expand_dims,
iscomplexobj, mean, ndarray, newaxis, ones, pi,
poly, polyadd, polyder, polydiv, polymul, polysub, polyval,
product, r_, ravel, real_if_close, reshape,
roots, sort, take, transpose, unique, where, zeros,
zeros_like)
import numpy as np
import math
from scipy.special import factorial
from .windows import get_window
from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext
from .filter_design import cheby1, _validate_sos
from .fir_filter_design import firwin
if sys.version_info.major >= 3 and sys.version_info.minor >= 5:
from math import gcd
else:
from fractions import gcd
__all__ = ['correlate', 'fftconvolve', 'convolve', 'convolve2d', 'correlate2d',
'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter',
'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2',
'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue',
'residuez', 'resample', 'resample_poly', 'detrend',
'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt', 'choose_conv_method',
'filtfilt', 'decimate', 'vectorstrength']
_modedict = {'valid': 0, 'same': 1, 'full': 2}
_boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1,
'symmetric': 1, 'reflect': 4}
_rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e')
_rfft_lock = threading.Lock()
def _valfrommode(mode):
try:
val = _modedict[mode]
except KeyError:
if mode not in [0, 1, 2]:
raise ValueError("Acceptable mode flags are 'valid' (0),"
" 'same' (1), or 'full' (2).")
val = mode
return val
def _bvalfromboundary(boundary):
try:
val = _boundarydict[boundary] << 2
except KeyError:
if val not in [0, 1, 2]:
raise ValueError("Acceptable boundary flags are 'fill', 'wrap'"
" (or 'circular'), \n and 'symm'"
" (or 'symmetric').")
val = boundary << 2
return val
def _inputs_swap_needed(mode, shape1, shape2):
"""
If in 'valid' mode, returns whether or not the input arrays need to be
swapped depending on whether `shape1` is at least as large as `shape2` in
every dimension.
This is important for some of the correlation and convolution
implementations in this module, where the larger array input needs to come
before the smaller array input when operating in this mode.
Note that if the mode provided is not 'valid', False is immediately
returned.
"""
if mode == 'valid':
ok1, ok2 = True, True
for d1, d2 in zip(shape1, shape2):
if not d1 >= d2:
ok1 = False
if not d2 >= d1:
ok2 = False
if not (ok1 or ok2):
raise ValueError("For 'valid' mode, one must be at least "
"as large as the other in every dimension")
return not ok1
return False
def correlate(in1, in2, mode='full', method='auto'):
r"""
Cross-correlate two N-dimensional arrays.
Cross-correlate `in1` and `in2`, with the output size determined by the
`mode` argument.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear cross-correlation
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
method : str {'auto', 'direct', 'fft'}, optional
A string indicating which method to use to calculate the correlation.
``direct``
The correlation is determined directly from sums, the definition of
correlation.
``fft``
The Fast Fourier Transform is used to perform the correlation more
quickly (only available for numerical arrays.)
``auto``
Automatically chooses direct or Fourier method based on an estimate
of which is faster (default). See `convolve` Notes for more detail.
.. versionadded:: 0.19.0
Returns
-------
correlate : array
An N-dimensional array containing a subset of the discrete linear
cross-correlation of `in1` with `in2`.
See Also
--------
choose_conv_method : contains more documentation on `method`.
Notes
-----
The correlation z of two d-dimensional arrays x and y is defined as::
z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])
This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')`` then
.. math::
z[k] = (x * y)(k - N + 1)
= \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}
for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2`
where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`,
and :math:`y_m` is 0 when m is outside the range of y.
``method='fft'`` only works for numerical arrays as it relies on
`fftconvolve`. In certain cases (i.e., arrays of objects or when
rounding integers can lose precision), ``method='direct'`` is always used.
Examples
--------
Implement a matched filter using cross-correlation, to recover a signal
that has passed through a noisy channel.
>>> from scipy import signal
>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + np.random.randn(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128
>>> import matplotlib.pyplot as plt
>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.plot(clock, sig[clock], 'ro')
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.plot(clock, corr[clock], 'ro')
>>> ax_corr.axhline(0.5, ls=':')
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()
"""
in1 = asarray(in1)
in2 = asarray(in2)
if in1.ndim == in2.ndim == 0:
return in1 * in2
elif in1.ndim != in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
# Don't use _valfrommode, since correlate should not accept numeric modes
try:
val = _modedict[mode]
except KeyError:
raise ValueError("Acceptable mode flags are 'valid',"
" 'same', or 'full'.")
# this either calls fftconvolve or this function with method=='direct'
if method in ('fft', 'auto'):
return convolve(in1, _reverse_and_conj(in2), mode, method)
# fastpath to faster numpy.correlate for 1d inputs when possible
if _np_conv_ok(in1, in2, mode):
return np.correlate(in1, in2, mode)
# _correlateND is far slower when in2.size > in1.size, so swap them
# and then undo the effect afterward if mode == 'full'. Also, it fails
# with 'valid' mode if in2 is larger than in1, so swap those, too.
# Don't swap inputs for 'same' mode, since shape of in1 matters.
swapped_inputs = ((mode == 'full') and (in2.size > in1.size) or
_inputs_swap_needed(mode, in1.shape, in2.shape))
if swapped_inputs:
in1, in2 = in2, in1
if mode == 'valid':
ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)]
out = np.empty(ps, in1.dtype)
z = sigtools._correlateND(in1, in2, out, val)
else:
ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)]
# zero pad input
in1zpadded = np.zeros(ps, in1.dtype)
sc = [slice(0, i) for i in in1.shape]
in1zpadded[sc] = in1.copy()
if mode == 'full':
out = np.empty(ps, in1.dtype)
elif mode == 'same':
out = np.empty(in1.shape, in1.dtype)
z = sigtools._correlateND(in1zpadded, in2, out, val)
if swapped_inputs:
# Reverse and conjugate to undo the effect of swapping inputs
z = _reverse_and_conj(z)
return z
def _centered(arr, newshape):
# Return the center newshape portion of the array.
newshape = asarray(newshape)
currshape = array(arr.shape)
startind = (currshape - newshape) // 2
endind = startind + newshape
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]

https://github.com/scipy/scipy/blob/master/scipy/signal/signaltools.py

No comments:

Ukraine War Intel (scenarios war can end )

  https://sundayguardianlive.com/news/scenarios-ukraine-war-end